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Abstract

Realistic rendering of outdoor terrain requires both that the ge-
ometry of environment be modeled accurately and that appropriate
texturing be laid down on top of that geometry. We describe an ap-
proach for automatic coloring of panchromatic aerial orthoimagery.
The method is able to remove shading and shadowing effects in the
original image so that shading and shadowing appropriate to vari-
able times of day and year can be added. The method we present
is based on pattern recognition principles. It classifies regions in
the original panchromatic orthoimagery into classes that are sub-
sequently colored with user selected color palette. The method re-
quires very little user interaction and is robust. The user only needs
to select a few training point for each class that are later used in
the pattern recognition and classification step. We also present an
alternative method that is even simpler and requires no user inter-
vention.
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1 Introduction

Realistic rendering of outdoor terrain requires both that the geome-
try of environment be modeled accurately and that appropriate tex-
turing be laid down on top of that geometry.

1.1 The nature of the data

Geo-specific rendering of terrain requires information about both
the geometry and the photometry of the scene. Raw information
about the geometric shape of the terrain itself is most often avail-
able as aDigital Elevation Model(DEM), in which elevation values
are represented in a rectangular grid. The highest resolution widely
available elevation data for the continental U.S. are United States
Geological Survey (USGS) 7.5-Minute DEMs [9]. Elevation val-
ues with a nominal precision of 1m are provided at 30m intervals
(post spacing) on the ground. The 7.5-Minute DEMs are created by
optically scanning contour maps and then fitting an approximation
surface. They are subject to a number of systematic distortions that,
depending on the technology used when a particular DEM was pro-
duced, can result in the actual resolvability of ground features being
far worse than the 30m post spacing might suggest.

The most direct way to render geo-specific photometry is to start
with an image of the area to be rendered. Perspective effects make it
difficult to register conventional aerial imagery with elevation data.
As a result, anorthorectificationprocess is often performed, in
which the perspective image is warped to remove the effects of lens
projection, camera orientation, and terrain. The result is an image
that is effectively in a scaled orthographic projection. The USGS
provides 1m resolution panchromatic orthoimagery for much of the
continental U.S. No comparable source for color orthoimagery ex-
ists. Aerial survey companies can produce such imagery on a cus-
tom basis, but the cost is significant. Satellite images are often
used to render terrain. While not true color imagery as that term

is commonly used, multi-spectral satellite data can be converted to
an RGB format that closely approximates perceptual color. In ad-
dition, much work has gone into the classification of multi-spectral
satellite data to determine properties such as vegetation cover. Un-
fortunately, the resolution of available multi-spectral satellite data
is at best on the order of 20m on the ground [7, 1].

If actual imagery of the terrain being rendered is to be used,
the available choices are usually limited to false-colored multi-
spectral satellite data of limited resolution or USGS high-resolution
panchromatic orthoimagery. Since visual realism in terrain render-
ing depends in part on high resolution texturing, it is important to
explore whether or not panchromatic orthoimagery can be effec-
tively utilized. Can realistic color be generated? Can we get enough
information about ground cover to add detail not resolved in the
imagery? Can we remove shadows and shading effects so as to
simulate views at times other than when the original imagery was
acquired?

1.2 Coloring of Grayscale Images

Values in grayscale images vary only along one dimension (inten-
sity or luminance). The task of coloring a grayscale image involves
assigning a quantity that varies in three dimensions (e.g., red and
green and blue channels). A mapping between a color and lumi-
nance is not unique, because different colors can have the same
luminance (intensity) but different hue and saturation. Coloriza-
tion process of grayscale images is therefore ambiguous in nature
and requires some amount of human interaction. In subsequent sec-
tions, we describe two methods of coloring grayscale orthoimages.
The first method is based on the statistical pattern recognition. The
second method employs transformation of images in a decorrelated
color space where the statistical distribution between the source and
target images is matched.

2 Statistical Pattern Recognition

We briefly review statistical pattern recognition. More detailed re-
view can be found in Jainet al. [4]. Statistical pattern recognition
is used to establish boundaries between patterns. Apatternis rep-
resented by a set of attributed or features. There are three steps in
recognition:

• PreprocessingNoise and extraneous data is removed from
the input data and pattern is normalized and segmented from
the background.

• Learning For each pattern in the input data, appropriate fea-
tures representing input patterns are found. The classifier is
trained to partition the feature space of the input data.

• ClassificationBased on the measured features from the learn-
ing stage, the classifier assigns the input pattern to one of the
pattern classes.



A given pattern hasd features represented as ad−dimensional
feature vectorx = (x1, x2, . . . , xd). A statistical pattern
recognizer assigns a given pattern to one of thec categories
ω1, ω2, . . . , ωc based on a feature vectors. Features are assumed
to have a probability density function [4] dependent on the pattern
class. A pattern vectorx belonging to a classωi can be viewed as
an observation chosen randomly from the conditional probability
function p(x|ωi). Many rules are available that define the deci-
sion boundary between different classes: the Bayes decision rule,
the maximum likelihood rule, the Neyman-Pearson rule. Accord-
ing to the optimal Bayes decision rule, an input pattern vectorx is
assigned to a classωi for which the conditional risk

R(ωi|x) =
c∑

j=1

L(ωi, ωj) · P (ωj |x) (1)

is minimum.P (ωj |x) is the posterior probability andL(ωi, ωj) is
the loss incurred in decidingωi when the true class isωj . If the loss
functionL(ωi, ωj) is binary:

L(ωi, ωj) =

{
0, if i = j
1, if i 6= j

(2)

then the conditional riskR(ωi|x) from equation 1 is the conditional
probability of misclassification. For this particular loss function
L(ωi, ωj), the Bayes decision rule assigns an input patternx to
classωi if:

P (ωi|x) > P (ωj |x)for all j 6= i. (3)

If all of the class-conditional densities are specified, then the
maximuma posteriori rule can be used in a classifier. Unfortu-
nately, the class-conditional densities are usually not known in prac-
tice and must be learned from the training patterns. Sometimes the
form of the class-conditional densities is known (e.g. Gaussian), but
some important parameters of the distribution such as mean vectors
or covariance matrices are unknown. In this case, the unknown pa-
rameters in the distribution are replaced with the estimated values.
If the form of the class-densities is not known, we must either esti-
mate the density function or directly construct the decision bound-
ary. Statistical pattern recognition requires learning in the training
stage of classification. Each training pattern is explicitly labeled
with the category to which the pattern belongs. The performance
of a classifier greatly depends on the number of available training
samples and specific values at those sample points.

3 Orthoimagery

3.1 Normalizing and classifying orthoimages

Orthoimages are produced from conventional aerial photographs
and are subject to all of the vagrancies of the photographic process.
Though care is taken to use images taken when the sun angle is
high, shadows still occur. This is particularly so in images of alpine
terrain due to the steep slopes that are often present. To determine
surface type at each location in an orthoimage, it is desirable to first
reduce those brightness effects in the image that are due to shad-
ing rather than surface reflectivity. In order to render a view with
a simulated sun angle different from the actual sun angle when the
image was required, this same shading normalization must be ac-
companied by a process that removes the existing shadows.

3.2 Removing shading effects

To use aerial imagery in the rendering of terrain as it would appear
at different times of day, we need to minimize the luminance vari-
ability in the source imagery that is due to illumination effects at the

time the imagery was acquired. If we had a way to recover surface
albedo from luminance, this would also aid in determining what
sort of surface cover was present at a given location in the image.
Given Lambertian surfaces, a known distribution of illumination,
and surface orientation at every point, it is straightforward to de-
termine surface reflectances. In practice, we know none of these
properties. Surface reflectance is far from Lambertian, illumination
depends not only on sun angle but also on complex, weather de-
pendent variations in sky brightness, and DEMs provide only low
resolution information about surface orientation.

Nevertheless, shading effects can be reduced by applying a nor-
malization based on the cosine of the angle between the approxi-
mate surface orientation, as specified in a DEM, and an estimate of
the direct illumination direction. Sun angle is often provided with
satellite data. For USGS orthoimages, it must be estimated from
the imagery. Computer vision shape-from-shading methods can be
used to solve this problem [2]. If shadows are present and one or
more matches can be established between points on shadow gener-
ating contours and the corresponding point on the trailing edge of
the shadow, then the direction of direct illumination can be inferred
from the DEM-specified elevations of the corresponding points.

3.3 Classifying orthoimages

Figure 2 shows a 480m by 340m section of an orthoimage of an area
of the Rocky Mountains. Included within the image are regions of
pine trees, brush, talus, rock cliffs, and snow (Figure 1). Though not
visible at the resolution with which the image is printed here, the
pine trees are surrounded by an understory consisting of dirt, grass,
and shrub. Portions of talus, cliff, and snow are in shadow. Each
of these classes of surface cover has a distinct coloration. Given
the panchromatic brightness at each pixel and the corresponding
surface type, it is straightforward to produce a relatively accurate
color version of the image.

Image brightness can yield a rough categorization of these re-
gions: pine is dark, talus a mid-gray, and snow is bright. A quanti-
tative examination of image values, however, quickly demonstrates
that thresholding cannot adequately separate the classes of inter-
est, no matter how carefully the thresholds are chosen. Computer
vision techniques based on 2-D shape analysis are not likely to suc-
ceed either, given the complexity of the images. Instead, we have
successfully used a pattern classification approach similar to that
used to classify multi-spectral data.

For each pixel in the deshadowed orthoimage, we computed
eight features:

1. pixel brightness

2. average neighborhood brightness

3. minimum neighborhood brightness

4. maximum neighborhood brightness

5. elevation

6. slope

7. aspect

8. angle to southern occluder

Features 2–4 allow consideration of brightness within a local con-
text. Features 5 and 6 are computed by interpolating 30m DEM
values. Feature 7 measures the direction a given point on a slope
is facing, and important determinant of vegetation cover. Feature 8
measure the angle from a given point to the southern skyline. Larger
values increase the likelihood that the point will be in shadow when
the image was acquired.



Figure 1:Classification classes

A simple normal distribution, maximum likelihood Bayes clas-
sifier [3] proved sufficient, avoiding the need for complex train-
ing procedures, hand tuning of parameters, or other manual adjust-
ments. This classifier assumes that the values of each feature for
each class are generated by a normally distributed random process,
possibly involving correlation between different features. Popula-
tion statistics,P (x|Ck), are computed for feature values, repre-
sented as a vectormathbfx, given that the features came from a
particular class,Ck. Since the feature values arising from a given
class are assumed to be normally distributed, their statistics are
completely characterized by a mean vector,µk, and a covariance
matrix, Φk. It is easily shown that given thea priori likelihood
of each class,P (Ck), the minimum error classifier is achieved by
assigning the classCk such that:

P (Ck|x) ≥ P (Cj |x)∀j 6= k. (4)

Bayes law is used to convert this to a discriminant function formu-
lation, in whichCk is chosen maximizing:

gk = −1

2
xt[Φk]−1x + xt[Φk]−1µk

−1

2
µt

k[Φk]−1µk + ln P (Ck) − 1

2
ln |Φk|. (5)

For each class listed in Figure 1, several hundred image locations
were selected manually to form a training set, in a process requiring
only a few minutes of time. Statistics on the distributions of feature
values for the training set were determined and used to form the dis-
criminant functions for a maximum likelihood Bayes classifier [8].
This classifier was then used to categorize each pixel location in the
full orthoimage.

Classification results are shown in Figure 3. While ground-truth
validation has not been done, spot checking of the results corre-
sponds closely with what would be expected from a careful exami-
nation of the orthoimage. It is important to note that the classifica-
tion was accomplished with no hand tuning of parameters or other
manual adjustments, other than the selection of training samples.

Figure 2:480m by 340m section of an orthoimage of the Wastach
Mountains

Figure 3:Classification results with coloring from Figure 1.

3.4 Removing shadows

While the aerial imagery used to generate orthoimages is chosen
to minimize shadows, shadowing is still present. As would be ex-
pected, the severity of this problem increases with the ruggedness
of the terrain. These shadows need to be removed and replaced
by simulated shadows resulting from a different illumination direc-
tion if we want to use the imagery to texture a terrain scene for a
date/time different from when the image was taken. Given accurate
information about the direction of incident direct illumination and
high resolution elevation data, expected shadow locations could be
easily computed. Given that we have neither, another approach is
needed.

The maximum likelihood classifier does a good job of identify-
ing shadow areas and can even categorize different surface covers
within the shadowed regions. This can be used to remove the pho-
tometric effects of shadowing, even when the direction of illumina-
tion is not known. For purposes of visual rendering, it is enough to
renormalize shadowed portions of the orthoimage to have a bright-
ness distribution statistically similar to unshadowed regions of the
same surface type. In practice, it appears to be enough to standard-
ize the mean and standard deviations of the shadowed regions. For
some orthoimages, dynamic range compression in darker shadow
regions results in quantization noise that is exacerbated by mean-



Figure 4: Color Transfer to Grayscale Orthoimage. Fully auto-
matic statistical method is used to transfer color from a sample
source image to a grayscale target image by making statistical color
distribution in the target image equal to the distribution in the source
image. Different source images were applied to the same grayscale
target image.

variance normalization. This problem can be largely eliminated by
adding a spatially correlated dither.

Often, shadow boundaries in orthoimages exhibit a penumbra-
like effect, though at a scale much larger than the shadow penum-
bra that would be generated by a light source the angular extent of
the sun. The causes of this phenomenon are not clear, but are likely
due to a combination of interreflection, variations in sky bright-
ness, and photographic dodging done as a pre-processing step in
orthophoto preparation. Whatever the cause, these shadow fringes
are visually distracting and can generate ground type misclassifica-
tions. Fortunately, it is an easy matter to replace dark pixels near
classified shadow regions with lighter pixels slightly farther away,
largely eliminating the problem.

4 Color Transfer to Grayscale Images

Recently, Rudermanet al. developed a color space, calledlαβ ,
which minimizes correlation between channels for many “natural”
scenes [6]. Reinhardet al.[5] used this color space to transfer color
from one color image to another. The basic idea of the method is
to transform the three-dimensional color distribution between the
target and source images such that the two distributions match.

A relatively simple extension to this algorithm can be employed
to transfer color to grayscale images. A grayscale image only has
intensity (or luminance) distribution, therefore only luminance dis-
tributions can be matched between two images. A single luminance
value is ambiguous because it could represent different parts of an
image. Therefore the statistics within some neighborhood is con-
sidered to match luminance distributions. When a pixel is matched
the color is transferred to a grayscale image, but the luminance of
the pixel is retained. The final colors are assigned to each pixel in
the original grayscale image by matching each pixel in the source
image with the pixel in a target image using some distance metric
(L2 distance). Each pixel is therefore determined only by match-
ing it to other pixels in the same image. More details about this
algorithm can be found in Reinhardet al. [5] and Welshet al. [10].
Some preliminary results of transferring color from color images to
panchromatic images are shown in figure 4.

5 Conclusion

Automatic color transfer to grayscale images is an underconstrained
problem that does not have optimal solution. We described an ap-
proach for semi-automatic coloring of panchromatic aerial orthoim-
agery based on pattern recognition and classification techniques.
The method is able to remove shading and shadowing effects in
the original image so that shading and shadowing appropriate to
variable times of day and year can be added. Automatic methods
of color transfer are possible based on statistical analysis of color
distributions, however they often do not provide the desired results
due to the underconstrained problem. It would be beneficial to try
to combine semi-automatic pattern classification method with fully
automatic statistical color transfer method using Bayesian statistics
and learning algorithms.
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